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1. Introduction

Gr-prime ideals of a commutative graded ring have been introduced and

studied by Refai and Al-Zoubi in [14]. Gr-weakly prime ideals of a commutative

graded ring have been introduced and studied by Atani in [4]. Gr-prime and gr-

weakly prime submodules of graded modules over graded commutative rings

have been studied by various authors; (see, for example [5, 6, 7, 12]). Gr-

2-absorbing and gr-weakly 2-absorbing submodules have been studied by Al-

Zoubi and Abu-Dawwas in [2]. Also, gr-classical prime submodules of graded

modules over graded commutative rings have been introduced and studied by

various authors; (see [3, 8] ). Here we introduce the concept of graded weakly

classical prime (gr-weakly classical prime) submodules. A number of results
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concerning of gr-weakly classical prime submodules are given (see sec. 2).

First, we recall some basic properties of graded rings and modules which will

be used in the sequel. We refer to [9] and [10] for these basic properties and

more information on graded rings and modules. Let G be a group with identity

e. A ring R is said to be G-graded ring if there exist additive subgroups Rg

of R such that R = ⊕g∈GRg and RgRh ⊆ Rgh for all g, h ∈ G. The elements

of Rg are called homogeneous of degree g and Re (the identity component of

R) is a subring of R and 1 ∈ Re. For x ∈ R, x can be written uniquely as∑
g∈G xg where xg is the component of x in Rg. Also we write h(R) = ∪g∈GRg

and supp(R,G) = {g ∈ G : Rg ̸= 0}. Let M be a left R - module. Then M is

a G - graded R - module (shortly, M is gr-R- module) if there exist additive

subgroups Mg of M indexed by the elements g ∈ G such that M = ⊕g∈GMg

and RgMh ⊆ Mgh for all g, h ∈ G. The elements of Mg are called homogeneous

of degree g. If x ∈ M , then x can be written uniquely as
∑

g∈G xg, where xg is

the component of x in Mg. Clearly, Mg is Re - submodule of M for all g ∈ G.

Also we write h(M) = ∪g∈GMg. and supp(M,G) = {g ∈ G : Mg ̸= 0}. Let R

be a G-graded ring and I be an ideal of R. Then I is called G-graded ideal if

I = ⊕g∈G(I ∩ Rg), i.e., if x ∈ I and x =
∑

g∈G xg, then xg ∈ I for all g ∈ G.

An ideal of a G-graded ring need not be G-graded.

Let M be a G-gr-R-module and N be an R-submodule of M . Then N

is called G-gr-R-submodule if N = ⊕g∈G(N ∩ Mg), i.e., if x ∈ N and x =∑
g∈G xg, then xg ∈ N for all g ∈ G. Also, an R-submodule of a G-graded

R-module need not be G-graded.

Let R be a G-graded ring and M a graded R-module. A proper graded

ideal P of R is said to be gr-prime ( resp. gr-weakly prime ) ideal if whenever

r, s ∈ h(R) with rs ∈ P ( resp. 0 ̸= rs ∈ P ), then either r ∈ P or s ∈ P .

A proper graded submodule N of a graded module M is said to be gr-prime (

resp. gr-weakly prime ) submodule if whenever r ∈ h(R) and m ∈ h(M) with

rm ∈ N ( resp. 0 ̸= rm ∈ N ), then either r ∈ (N :
R
M) or m ∈ N . A proper

graded submodule N of M is called a gr-classical prime submodule if whenever

r, s ∈ h(R) and m ∈ h(M) with rsm ∈ N , then either rm ∈ N or sm ∈ N .

Of course, every gr-prime submodule is a gr-classical prime submodule, but

the converse is not true in general (see [3, Example 2.3]). The annihilator of

graded R-module M which is denoted by AnnG(M) is (0 : M). Furthermore,

for every m ∈ h(M), (0 : m) is denoted by AnnG(m).

2. Results

Definition 2.1. Let R be a G-graded ring, M a graded R-module and N a

proper graded submodule of M . N is said to be graded weakly classical prime

(gr-weakly classical prime) if whenever a, b ∈ h(R) and m ∈ h(M) such that

0 ̸= abm ∈ N , then either am ∈ N or bm ∈ N .
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Proposition 2.2. Let M be a gr-R-module and N be a gr-R-submodule of M .

If (N : m) is a gr-weakly prime ideal of R for every m ∈ h(M)−N , then N is

a gr-weakly classical prime R-submodule of M .

Proof. Let a, b ∈ h(R) and m ∈ h(M) such that 0 ̸= abm ∈ N . If m ∈ N , then

we are done. Suppose m /∈ N . Then 0 ̸= ab ∈ (N : m) and since (N : m) is

a gr-weakly prime ideal, either a ∈ (N : m) or b ∈ (N : m) and then either

am ∈ N or bm ∈ N and hence N is a gr-weakly classical prime R-submodule

of M . □

Proposition 2.3. Let M be a gr-R-module and N be a gr-R-submodule of M .

If N is a gr-weakly classical prime R-submodule of M and m ∈ h(M)−N such

that AnnG(m) = 0, then (N : m) is a gr-weakly prime ideal of R.

Proof. By [5, Lemma 2.1], (N : m) is a graded ideal of R. Let a, b ∈ h(R)

such that 0 ̸= ab ∈ (N : m). Then since AnnG(m) = 0, 0 ̸= abm ∈ N and

since N is gr-weakly classical prime, either am ∈ N or bm ∈ N and then either

a ∈ (N : m) or b ∈ (N : m). Hence, (N : m) is a gr-weakly prime ideal of

R. □

Let M and L be two gr-R-modules. A homomorphism of gr-R-module ϕ :

M → L is a homomorphism of R–modules satisfying ϕ(Mg) ⊆ Lg for every

g ∈ G(see [10]).

Theorem 2.4. Let R be a G-graded ring and M,L be two gr-R-modules and

ϕ : M → L be an epimorphism of gr-modules. If N is a gr-weakly classical

prime R-submodule of M containing Ker(f), then f(N) is a gr-weakly classical

prime R-submodule of L.

Proof. First, we prove that f(N) is a graded R-submodule of L. Clearly, f(N)

is an R-submodule of L. Let y ∈ f(N). Then there exists x ∈ N such that

f(x) = y. Let x =
∑n

i=1 xgi where xgi ∈ Mgi − 0, gi ̸= gj for i ̸= j. Then

y =
∑n

i=1 f(xgi). For each 1 ≤ i ≤ n, there exists hi ∈ supp(L,G) with

f(xgi) ∈ Lhi − 0 and hi ̸= hj for i ̸= j. Let h ∈ G. If h ̸= hi for all 1 ≤ i ≤ n,

then yh = 0 = f(0) ∈ f(N). If h = hi for some 1 ≤ i ≤ n, then yh = f(xgi).

Since x ∈ N and N is graded, xgi ∈ N and then yh ∈ f(N). Hence, f(N) is a

graded R-submodule of L. Secondly, we prove that f(Mg) = Lg for all g ∈ G.

Let g ∈ G and let rg ∈ Lg. If rg = 0, then rg = 0 = f(0) ∈ f(Mg). Suppose

rg ̸= 0. Since f is onto, there exists x ∈ M − 0 such that f(x) = rg. Suppose

x =
∑n

i=1 xgi where xgi ∈ Mgi −0, gi ̸= gj for i ̸= j. Then rg =
∑n

i=1 f(xgi) =∑k
i=1 f(xgti

) where 1 ≤ ti ≤ n and f(xgti
) ̸= 0 for all 1 ≤ i ≤ k. Since

f(xgti
) ∈ Lgti

, rg ∈ Lg

∩∑k
i=1 Lgti

. Thus, g = gt1 = ....... = gtn and hence

k = 1 and f(xgti
) = f(xg) = rg. So, rg ∈ f(Mg) and hence Lg ⊆ f(Mg) and

as f(Mg) ⊆ Lg, f(Mg) = Lg. Now, let a, b ∈ h(R) and s ∈ h(L) such that

0 ̸= abs ∈ f(N). Since s ∈ h(L), s ∈ Lg for some g ∈ G and since Lg = f(Mg),



156 R. Abu-Dawwas, K. Al-Zoubi

there existsm ∈ Mg ⊆ h(M) such that f(m) = s and then 0 ̸= f(abm) ∈ f(N),

it follows that there exists n ∈ N ∩ h(M) such that f(abm) = f(n) and then

f(abm − n) = 0, so abm − n ∈ Ker(f) ⊆ N and as n ∈ N , 0 ̸= abm ∈ N .

Since N is gr-weakly classical prime, either am ∈ N or bm ∈ N and then

either as ∈ f(N) or bs ∈ f(N). Hence, f(N) is a gr-weakly classical prime

R-submodule of L. □

Let M be a G-graded R-module and K be an R-submodule of M . Then

M/K is a graded R-module by putting (M/K)g = (Mg +K) /K.

Proposition 2.5. Let K and N be two graded proper R-submodules of a gr-R-

module M such that K ⊂ N . If K is a gr-weakly classical prime R-submodule

of M and N/K is a gr-weakly classical prime R-submodule of M/K, then N

is a gr-weakly classical prime R-submodule of M .

Proof. Let a, b ∈ h(R) and m ∈ h(M) such that 0 ̸= abm ∈ N . If abm ∈ K,

then as K is gr-weakly classical prime, either am ∈ K ⊂ N or bm ∈ K ⊂ N

and then we are done. Suppose abm /∈ K. Since m ∈ h(M), m ∈ Mg for

some g ∈ G and then m + K ∈ (Mg +K) /K = (M/K)g ⊆ h(M/K). Now,

0 ̸= ab(m + K) ∈ N/K and since N/K is gr-weakly classical prime, either

am + K ∈ N/K or bm + K ∈ N/K and then either am ∈ N or bm ∈ N .

Hence, N is a gr-weakly classical prime R-submodule of M . □

Proposition 2.6. Let N be a graded R-submodule of a gr-R-module M . If N

is a gr-weakly prime R-submodule of M , then N is a gr-weakly classical prime

R-submodule of M .

Proof. Let a, b ∈ h(R) and m ∈ h(M) such that 0 ̸= abm ∈ N . Then since N

is gr-weakly prime, either bm ∈ N or a ∈ (N : M). If bm ∈ N , then we are

done. If a ∈ (N : M), then am ∈ N . Hence, N is a gr-weakly classical prime

R-submodule of M . □

The concept of gr-2-absorbing submodules (respectively, gr-weakly 2-absorbing

submodules) of a graded module over a commutative graded ring is studied in

[2]. A graded proper R-submodule N of a gr-R-module M is said to be gr-2-

absorbing (gr-weakly 2-absorbing) if whenever a, b ∈ h(R) and m ∈ h(M) such

that abm ∈ N (0 ̸= abm ∈ N), then either am ∈ N , bm ∈ N or ab ∈ (N : M).

It is clear that if N is a gr-weakly classical prime R-submodule of M , then

N is a gr-weakly 2-absorbing R-submodule of M . We introduce the following:

Proposition 2.7. If N is a gr-weakly 2-absorbing R-submodule of M and

(N : M) is a gr-weakly prime ideal of R, then N is a gr-weakly classical prime

R-submodule of M .

Proof. Let a, b ∈ h(R) and m ∈ h(M) such that 0 ̸= abm ∈ N . Then since

N is gr-weakly 2-absorbing, am ∈ N , bm ∈ N or ab ∈ (N : M). If am ∈ N
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or bm ∈ N , then we are done. Suppose ab ∈ (N : M). If ab = 0, then

abm = 0 a contradiction. So, 0 ̸= ab ∈ (N : M) and since (N : M) is gr-weakly

prime, either a ∈ (N : M) or b ∈ (N : M) and then either am ∈ aM ⊆ N

or bm ∈ bM ⊆ N . Hence, N is a gr-weakly classical prime R-submodule of

M . □

Proposition 2.8. Let N be a graded R-submodule of a gr-R-module M . If N

is a gr-weakly classical prime R-submodule of M , then Ng is a weakly classical

prime Re-submodule of Mg for all g ∈ G.

Proof. Let g ∈ G. Let a, b ∈ Re and m ∈ Mg such that 0 ̸= abm ∈ Ng. Since

Re ⊆ h(R) and Mg ⊆ h(M), a, b ∈ h(R) and m ∈ h(M). Since Ng ⊆ N ,

0 ̸= abm ∈ N and since N is gr-weakly classical prime, either am ∈ N or

bm ∈ N . If am ∈ N , then am ∈ ReMg

∩
N ⊆ Mg

∩
N = Ng. Similarly, if

bm ∈ N , then bm ∈ Ng. Hence, Ng is a weakly classical prime Re-submodule

of Mg. □

Let M be an R-module and N be an R-submodule of M . Then for every

a ∈ R, we define (N :M a) = {m ∈ M : am ⊆ N}. it is easy to prove that

(N :M a) is an R-submodule of M containing N . Moreover, it is easy top

prove that if N is a graded R-submodule of a gr-R-module M , then (N :M a)

is a graded R-submodule of M .

The next proposition gives a characterization for gr-weakly classical prime

submodules.

Proposition 2.9. Let M be a gr-R-module and N be a graded R-submodule

of M . Then N is a gr-weakly classical prime R-submodule of M if and only if

(N :h(M) ab) = (0 :h(M) ab)
∪
(N :h(M) a)

∪
(N :h(M) b) for all a, b ∈ h(R).

Proof. Suppose N is a gr-weakly classical prime R-submodule of M . Let a, b ∈
h(R) and let m ∈ (N :h(M) ab). Then abm ∈ N . If abm = 0, then m ∈ (0 :h(M)

ab). Suppose abm ̸= 0. Since N is gr-weakly classical prime, either am ∈ N

or bm ∈ N and then either m ∈ (N :h(M) a) or (N :h(M) b). Conversely, Let

a, b ∈ h(R) and m ∈ h(M) such that 0 ̸= abm ∈ N . Then m ∈ (N :h(M) ab)

and then by assumption, either m ∈ (N :h(M) a) or m ∈ (N :h(M) b) that

is either am ∈ N or bm ∈ N . Hence, N is a gr-weakly classical prime R-

submodule of M . □

Similarly, we introduce the following:

Proposition 2.10. Let M be a gr-R-module and N be a graded R-submodule

of M . If N is a gr-weakly classical prime R-submodule of M , then (N :h(R)

abm) = (0 :h(R) abm)
∪
(N :h(R) am)

∪
(N :h(R) bm) for all a, b ∈ h(R) and

m ∈ h(M).

Proof. Let a, b ∈ h(R) and m ∈ h(M). Assume that r ∈ (N :h(R) abm). Then

rabm ∈ N . If rabm = 0, then r ∈ (0 :h(R) abm). Suppose rabm ̸= 0. Then
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0 ̸= ab(rm) ∈ N and since N is gr-weakly classical prime, either arm ∈ N or

brm ∈ N and then either r ∈ (N :h(R) am) or r ∈ (N :h(R) bm). □
Theorem 2.11. Let M1, M2 be two graded R-modules and N1 be a proper

graded R-submodule of M1. Then the following conditions are equivalent:

(1) N = N1×M2 is a gr-weakly classical prime submodule of M = M1×M2.

(2) N1 is a gr-weakly classical prime submodule of M1 and for each a, b ∈
h(R) and m1 ∈ h(M1) we have abm1 = 0, am1 /∈ N1, bm1 /∈ N1 ⇒ ab ∈
AnnG(M2).

Proof. (1) ⇒ (2) Suppose that N = N1 × M2 is a gr-weakly classical prime

submodule of M = M1 × M2. Let a, b ∈ h(R) and m1 ∈ h(M1) be such

that 0 ̸= abm1 ∈ N1. Then (0, 0) ̸= ab(m1, 0) ∈ N . Thus a(m1, 0) ∈ N

or b(m1, 0) ∈ N , and so am1 ∈ N1 or bm1 ∈ N1. Consequently N1 is a gr-

weakly classical prime submodule of M1. Now, assume that abm1 = 0 for some

a, b ∈ h(R) and m1 ∈ h(M1) such that am1 /∈ N1 and bm1 /∈ N1. Suppose

that ab /∈ AnnG(M2). Therefore there exists m2 ∈ h(M2) such that abm2 ̸= 0.

Hence (0, 0) ̸= ab(m1,m2) ∈ N , and so a(m1,m2) ∈ N or b(m1,m2) ∈ N .

Thus am1 ∈ N1 or bm1 ∈ N1 which is a contradiction. Consequently ab ∈
AnnG(M2).

(2) ⇒ (1) Let a, b ∈ h(R) and (m1,m2) ∈ h(M) = h(M1 ×M2) be such that

(0, 0) ̸= ab(m1,m2) ∈ N = N1 × M2. First assume that abm1 ̸= 0. Then by

part (2), am1 ∈ N1 or bm1 ∈ N1. So a(m1,m2) ∈ N or b(m1,m2) ∈ N , and

thus we are done. If abm1 = 0, then abm2 ̸= 0. Therefore ab /∈ AnnG(M2),

and so part (2) implies that either am1 ∈ N1 or bm1 ∈ N1. Again we have

that a(m1,m2) ∈ N or b(m1,m2) ∈ N which shows N is a gr-weakly classical

prime submodule of M . □

The following two propositions have easy verifications.

Proposition 2.12. Let M1,M2 be two graded R-modules and N1 be a proper

graded R-submodule of M1. Then N = N1 × M2 is a gr-classical prime sub-

module of M = M1×M2 if and only if N1 is a gr-classical prime submodule of

M1.

Proposition 2.13. Let M1,M2 be two graded R-modules and N1, N2 be two

proper graded R-submodules of M1,M2, respectively. If N = N1 ×N2 is a gr-

weakly classical prime (resp. gr-classical prime) submodule of M = M1 ×M2,

then N1 is a gr-weakly classical prime (resp. gr-classical prime) submodule of

M1 and N2 is a gr-weakly classical prime (resp. gr-classical prime) submodule

of M2.

Let Ri be a commutative graded ring with unity and Mi be a graded Ri-

module, for i = 1, 2. Consider the graded ring R = R1 × R2. Then M =

M1×M2 is a graded R-module and each graded submodule of M is in the form

of N = N1 ×N2 for some graded submodules N1 of M1 and N2 of M2.
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Theorem 2.14. Let R = R1 × R2 be a graded ring and M = M1 × M2 be

a graded R-module where M1 is a graded R1-module and M2 is a graded R2-

module. Suppose that N = N1 ×M2 is a proper graded submodule of M . Then

the following conditions are equivalent:

(1) N1 is a gr-classical prime submodule of M1;

(2) N is a gr-classical prime submodule of M ;

(3) N is a gr-weakly classical prime submodule of M .

Proof. (1) ⇒ (2) Let (r1, r2)(s1, s2)(m1,m2) ∈ N for some (r1, r2), (s1, s2) ∈
h(R) and (m1,m2) ∈ h(M). Then r1s1m1 ∈ N1 so either r1m1 ∈ N1 or

s1m1 ∈ N1 which shows that either (r1, r2)(m1,m2) ∈ N or (s1, s2)(m1,m2) ∈
N . Consequently N is a gr-classical prime submodule of M .

(2) ⇒ (3) It is clear that every gr-classical prime submodule is a gr-weakly

classical prime submodule.

(3) ⇒ (1) Let rsm ∈ N1 for some r, s ∈ h(R1) and m ∈ h(M1). We may

assume that 0 ̸= m′ ∈ h(M2). Therefore 0 ̸= (r, 1)(s, 1)(m,m′) ∈ N . So either

(r, 1)(m,m′) ∈ N or (s, 1)(m,m′) ∈ N . Therefore rm ∈ N1 or sm ∈ N1. Hence

N1 is a gr-classical prime submodule of M1. □

Let R be a G-graded ring, M be a graded R-module and S ⊆ h(R) be a

multiplicatively closed subset of R. Then the ring of fraction S−1R is a graded

ring which is called graded ring of fractions. Indeed, S−1R = ⊕
g∈G

(S−1R)g

where (S−1R)g = {r/s : r ∈ R, s ∈ S and g = (deg s)−1(deg r)}. The module

of fraction S−1M over a graded ring S−1R is a graded module which is called

module of fractions, if S−1M = ⊕
g∈G

(S−1M)g where (S−1M)g = {m/s : m ∈

M, s ∈ S and g = (deg s)−1(degm)}. We write h(S−1R) = ∪
g∈G

(S−1R)g and

h(S−1M) = ∪
g∈G

(S−1M)g, (see[10]).

A graded zero-divisor on a graded R-module M is an element r ∈ h(R) for

which there exists m ∈ h(M) such that m ̸= 0 but rm = 0. The set of all

graded zero-divisors on M is denoted by G− ZdvR(M).

The following result studies the behavior of gr-weakly classical prime sub-

modules under localization.

Proposition 2.15. Let R be a G-graded ring, M a graded R-module and S ⊆
h(R) a multiplication closed subset of R. Then the following hold:

(1) If N is a gr-weakly classical prime R-submodule of M and (N : M)
∩
S =

ϕ, then S−1N is a gr-weakly classical prime R-submodule of S−1M .

(2) If S−1N is a gr-weakly classical prime R-submodule of S−1M such

that S
∩

G− ZdvR(N) = ϕ and S
∩

G− ZdvR(M/N) = ϕ, then N is

a gr-weakly classical prime R-submodule of M .

Proof. (1) Let N be a gr-weakly classical prime R-submodule of M and

(N : M)
∩

S = ϕ. Suppose 0 ̸= p
r
q
s
m
t ∈ S−1N for some p

r ,
q
s ∈ h(S−1R)



160 R. Abu-Dawwas, K. Al-Zoubi

and for some m
t ∈ h(M). Then there exists u ∈ S such that upqm ∈ N .

If upqm = 0, then p
r
q
s
m
t = upqm

urst = 0
1 a contradiction. Since N is gr-

weakly classical prime and 0 ̸= upqm ∈ N , we conclude that either

pum ∈ N or qum ∈ N . So, p
r
m
t = upm

urt ∈ S−1N or q
s
m
t = uqm

ust ∈ S−1N

. Thus S−1N is a gr-weakly classical prime R-submodule of S−1M .

(2) Suppose S−1N is a gr-weakly classical prime R-submodule of S−1M

such that S
∩
G− ZdvR(N) = ϕ and S

∩
G− ZdvR(M/N) = ϕ. Let

p, q ∈ h(R) and m ∈ h(M) such that 0 ̸= pqm ∈ N . Then p
1
q
1
m
1 ∈

S−1N . If p
1
q
1
m
1 = 0, then there exists u ∈ S such that upqm = 0 that

contradicts S
∩

G−ZdvR(N) = ϕ. Since S−1N is a gr-weakly classical

prime R-submodule of S−1M and 0 ̸= p
1
q
1
m
1 ∈ S−1N, we conclude that

either p
1
m
1 ∈ S−1N or q

1
m
1 ∈ S−1N . If p

1
m
1 ∈ S−1N , then there exists

s ∈ S such that spm ∈ N and since S
∩
G−ZdvR(M/N) = ϕ, pm ∈ N .

Similarly, If q
1
m
1 ∈ S−1N , then qm ∈ N . Therefore, N is a gr-weakly

classical prime R-submodule of M .

□

Theorem 2.16. Let R be a G-graded ring, M a graded R-module and N a

gr-weakly classical prime submodule of M. Then for each g ∈ Mg, either Ng is

a classical prime Re-submodule of Mg or (Ng :Re Mg)
2Ng = 0.

Proof. By Proposition 2.8, Ng is a weakly classical prime Re-submodule of

Mg for every g ∈ Mg. It is enough to show that if (Ng :Re Mg)
2Ng ̸= 0 for

some g ∈ G, then Ng is a classical prime Re-submodule of Mg. Let rsm ∈ Ng

where r, s ∈ Re and m ∈ Mg. If rsm ̸= 0, then either rm ∈ Ng or sm ∈ Ng

since Ng is a weakly classical prime Re-submodule of Mg. So suppose that

rsm = 0. If rsNg ̸= 0, then there is an element n ∈ Ng such that rsn ̸=
0, so 0 ̸= rs(m + n) = rsn ∈ Ng, so we conclude that r(m + n) ∈ Ng or

s(m + n) ∈ Ng. Thus rm ∈ Ng or sm ∈ Ng. So we can assume that rsNg =

0. If r(Ng :Re Mg)m ̸= 0 then there is an element w ∈ (Ng :Re Mg) such

that rwm ̸= 0 . Then r(s + w)m ̸= 0 because rsm = 0. Since wm ∈ Ng,

r(s + w)m ∈ Ng. Then rm ∈ Ng or (s + w)m ∈ Ng. Hence rm ∈ Ng or

sm ∈ Ng. So we can assume that r(Ng :Re Mg)m = 0. Similarly, we can

assume that s(Ng :Re Mg)m = 0. If r(Ng :Re Mg)Ng ̸= 0 , then rka ̸= 0 for

some k ∈ (Ng :Re Mg) and a ∈ Ng. Since rsNg = 0 and r(Ng :Re Mg)m = 0,

we conclude that 0 ̸= r(s + k)(m + a) = rka ∈ Ng. So r(m + a) ∈ Ng or

(s + k)(m + a) ∈ Ng. Hence rm ∈ Ng or sm ∈ Ng. So we can assume that

r(Ng :Re Mg)Ng = 0. Similarly, we can assume that s(Ng :Re Mg)Ng = 0.

Since we assume that (Ng :Re Mg)
2Ng ̸= 0, there are r1, r2 ∈ (Ng :Re Mg) and

t ∈ Ng such that r1r2t ̸= 0. Then (r + r1)(s + r2)(m + t) = r1r2t ∈ Ng. So

(r + r1)(m + t) ∈ Ng or (s + r2)(m + t) ∈ Ng. Hence rm ∈ Ng or sm ∈ Ng.

Thus Ng is a classical prime Re-submodule of Mg □
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